Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides

نویسندگان

  • Alessandra Cardinali
  • Diego Pizzeghello
  • Giuseppe Zanin
  • Colin Jackson
چکیده

INTRODUCTION In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. MATERIALS AND METHODS In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). RESULTS AND DISCUSSION The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. CONCLUSION Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...

متن کامل

Ultrasound-Assisted Biodiesel Production in microreactors

The ultrasound-assisted (UA) soybean oil methanolysis using KOH as a catalyst was studied at different reaction conditions in a microreactor. Box–Behnken experimental design, with three variables, was performed and the effects of three reaction variables i.e. reaction temperature, catalyst concentration and the methanol-to-oil molar ratio on fatty acid methyl ester (FAME) yield were evaluated b...

متن کامل

Ultrasound Assisted In Situ Esterification of Rubber Seeds Oil for Biodiesel Production (RESEARCH NOTE)

Since the conventional esterification method requires longer processing time and obtain low yield, the intensification of this process is still interesting subject to be investigated. To reduce the oil extraction cost from seeds which almost 70% of total processing cost, in situ esterification has been recently introduced. The objective of study was to produce biodiesel from rubber seeds oil th...

متن کامل

Biodiesel production from soybean oil using ionic liquid as a catalyst in a microreactor

In the present study, Choline hydroxide (ChOH) as an ionic liquid catalyst was used for transesterification of soybean oil into biodiesel in a microchannel reactor. The effects of three variables i.e. reaction temperature, catalyst dosage and total flow rate on fatty acid methyl ester (FAME) content (wt. %) were optimized using Box–Behnken experimental design. In order to predict the FAME conte...

متن کامل

Kanemite: an easily prepared and highly efficient catalyst for biodiesel production optimized by response surface methodology

Kanemite was readily prepared and used as solid base catalyst for transesterification of sunflower oil to fatty acid methyl ester (FAME). The catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption and field emission scanning electron microscopy (FESEM) techniques. Central Composite Design (CCD) coupled with Response Surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015